
POCCIMICKAM DEMEPAIMM

路路路路路路

НА ИЗОБРЕТЕНИЕ

№ 2426599

СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ САМАРИЯ И ЕВРОПИЯ ионной флотацией с применением ДОДЕЦИЛСУЛЬФАТА НАТРИЯ

Патентообладатель(ли): Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" (RU)

Автор(ы): см. на обороте

密

密

M

密

路路路路路路

路路

Заявка № 2009112891

Приоритет изобретения 06 апреля 2009 г.

Зарегистрировано в Государственном реестре изобретений Российской Федерации 20 августа 2011 г.

Срок действия патента истекает 06 апреля 2029 г.

Руководитель Федеральной службы по интеллектуальной собственности, патентам и товарным знакам

Б.П. Симонов

РОССИЙСКАЯ ФЕДЕРАЦИЯ

(19)RU (11) **2426599**

(51) MIIK **B03D1/02** (2006.01) **C01F17/00** (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21), (22) Заявка: 2009112891/05,

06.04.2009

(24) Дата начала отсчета срока действия

патента: 06.04.2009

Приоритет(ы):

(22) Дата подачи заявки: 06.04.2009

(43) Дата публикации заявки: 20.10.2010

(45) Опубликовано: 20.08.2011

(56) Список документов, цитированных в

отчете о поиске: WO 2008019451 A1, 21.02.2008. ROBERT LEMLICH, Adsorptive bubble separation techniques, New York, Academic Press, 1972, p.280-284.

Адрес для переписки:

199106, Санкт-Петербург, В.О., 21 линия, 2, СПГГИ(ТУ), патентный отдел

(72) Автор(ы):

Лобачева Ольга Леонидовна (RU), Чиркст Дмитрий Эдуардович (RU), Берлинский Игорь Вячеславович (RU), Федорова Тамара Сергеевна (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" (RU)

(54) СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ САМАРИЯ И ЕВРОПИЯ ИОННОЙ ФЛОТАЦИЕЙ С ПРИМЕНЕНИЕМ ДОДЕЦИЛСУЛЬФАТА НАТРИЯ

(57) Реферат:

Изобретение может быть использовано в химической промышленности. Ионы самария и европия извлекают ионной флотацией с додецилсульфатом натрия, взятом в соотношении 1:3 по

стехиометрической схеме $Me^{3+}+3C_{12}H_{25}OSO_3$ = $Me(C_{12}H_{25}OSO_3)_3$, где Me - катион самария или европия, $C_{12}H_{25}OSO_3$ - додецилсульфат-ион. Изобретение позволяет достигать 99,9%-ного извлечения ионов самария и европия. 2 ил., 1 табл.

Изобретение относится к способам получения редкоземельных металлов (P3M) или их оксидов из бедного или техногенного сырья с помощью метода ионной флотации. Существует способ извлечения катионов самария и европия, такой как ионная флотация: в обзоре Adsorptive Bubble Separation techniques // Ed. by R.Lemlich, Academic Press, N.Y., London, 1972, 344 р. упоминается впервые процесс флотации ионов самария с использованием в качестве собирателя натриевой соли додецилбензилдиэтилентриамин тетрауксусной кислоты. Флотационное извлечение в данном случае составляло 98%. Ионы европия с содержанием в стоках от 110 до 210 мг/л извлекали с помощью бромида цетилпиридиния. Извлечение составляло 96%. Кроме того, существует метод извлечения ионов серебра, цинка, свинца, никеля и платины методом ионной флотации с применением изопропилметилэтилтиокарбамата в качестве собирателя (Авторы: Tall A.B. and Sheldon G.P., патент № WO 2008019451).

Катионы меди извлекали из водных растворов с помощью катионных реагентов - формула R₄NX (где R⁺ - радикалы катионных ПАВ, X⁻ - галоген-ионы) (Авторы: Engel M.D., Moxon N.T., Nicol S.K., патент № WO

9217614). Катионы цинка, меди, магния методом ионной флотации извлекали из водных растворов с применением в качестве собирателя RX (R - органический радикал C₁-C₄, X - фосфонаты или сульфонаты). (Авторы: Viljoen D.M., Lubbe L.E., патент № WO 2007086003).

Особенностью предлагаемого метода флотации является применение додецилсульфата натрия как флотореагента. В литературе имеется ряд работ, касающихся процессов флотации ионов самария и европия, например, известно применение додецилсульфата натрия в процессе ионной флотации как собирателя для извлечения таких металлов как медь, кобальт, никель (Скрылев Л.Д., Борисов А.В. Об эффективности флотационного выделения меди и никеля из сточных вод Норильского горнометаллургического комбината. // Журнал прикладной химии. 1978, Т.51, № 2, с.434-436).

Техническим результатом изобретения является повышение извлечения катионов самария и европия из водных растворов методом ионной флотации. Технический результат достигается тем, что в способе извлечения ионов самария и европия ионной флотацией с применением додецилсульфата натрия (NaDS) согласно изобретению в качестве собирателя используется NaDS в концентрации в соотношении 1:3 по стехиометрической схеме:

$$Me^{3+}+3C_{12}H_{25}OSO_3^{-}=Me(C_{12}H_{25}OSO_3)_3$$

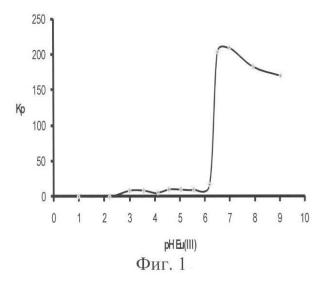
где Me^{3+} - катион самария или европия, $C_{12}H_{25}OSO_3^{-}$ - додецилсульфат-ион.

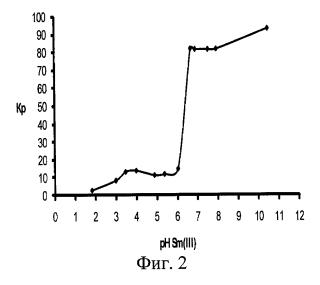
Параметром извлечения РЗМ является коэффициент распределения К. Величину К извлекаемого иона между водной и органической фазами рассчитывали по отношению концентрации [Me³+] (Sm³+ или Eu³+) в пене к концентрации [Me³+] в камерном остатке соответственно формуле: K=[Me³+]_{org}/[Me³+]_{aq} (Фиг.1 и Фиг.2).

Установлена зависимость коэффициента распределения редкоземельных металлов (P3M) между водной и органической фазами от pH раствора с целью нахождения условий наиболее полного выделения P3M самария (+3) и европия (+3). В качестве модельных использовались водные растворы нитратов самария (III) и европия (III) с концентрацией 0,001 моль·л⁻¹; в качестве ПАВ - додецилсульфат натрия, концентрация которого соответствовала стехиометрии реакции. Данные по коэффициенту распределения в растворах, содержащих NaDS и P3M, представлены в Таблице 1.

Процесс ионной флотации осуществлялся в высокопроизводительном аппарате - лабораторной флотационной машине механического типа 137 В-ФЛ, с объемом камеры 1,0 дм³, требующей небольшой объем производственных площадей.

В растворе ионы РЗМ образуют с ПАВ прочные комплексы, которые вследствие гидрофобности алкильных радикалов переходят в пенную фазу. Разрушение отобранной пены проводилось добавлением 5 мл раствора серной кислоты с концентрацией 1 моль л⁻¹. Полученный раствор (пенный продукт) и раствор, оставшийся в кювете после проведения флотации (камерный остаток), анализировали на содержание редкоземельного элемента. Извлечение ионов самария и европия методом ионной флотации с применением в качестве собирателя NaDS достигает 99.9%.


						Таблица 1
рН	[Sm ³⁺] в пене, моль·л ⁻¹	[Sm ³⁺] в камерном остатке, моль·л ⁻¹	К	[Eu ³⁺] в пене, моль·л ⁻¹	[Eu ³⁺] в камерном остатке, моль·л ⁻¹	К
3,0	0,00203	0,000236	8,6	0,00228	0,000288	7,9
3,5	0,00186	0,000139	13,4	0,00186	0,000236	7,9
4,0	0,00184	0,000130	14,0	0,00110	0,000218	5,0
4,9	0,00197	0,000171	11,5	0,00183	0,000179	8,2
5,5	0,00223	0,000183	12,1	0,00177	0,000179	9,8
6,1	0,00198	0,000131	15,1	0,00174	0,000105	16,6
6,7	0,00190	0,000023	81,9	0,00229	0,000011	204,0
7,0	0,00153	0,000019	81,5	0,00173	0,000008	208,9
7,9	0,00125	0,000015	81,6	0,00165	0,000009	182,6


Формула изобретения

Способ извлечения ионов самария и европия ионной флотацией с применением поверхностноактивного вещества додецилсульфата натрия, отличающийся тем, что в качестве собирателя используется додецилсульфат натрия в концентрации в соотношении 1:3 по стехиометрической схеме:

 $Me^{3+}+3C_{12}H_{25}OSO_3$ = $Me(C_{12}H_{25}OSO_3)_3$,

где Me - катион самария или европия, $C_{12}H_{25}OSO_3$ - додецилсульфат-ион.

