POCCIMICKAM DEMEPAIMM

路路路路路路

на изобретение

№ 2437853

КОМПОЗИЦИЯ ДЛЯ КОНСЕРВАЦИИ ПРОМЫШЛЕННЫХ ОТВАЛОВ

Патентообладатель(ли): Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" (RU)

Автор(ы): Толстунов Сергей Андреевич (RU)

Заявка № 2010121990

Приоритет изобретения 28 мая 2010 г.

Зарегистрировано в Государственном реестре изобретений Российской Федерации 27 декабря 2011 г.

Срок действия патента истекает 28 мая 2030 г.

Руководитель Федеральной службы по интеллектуальной собственности, патентам и товарным знакам

Deery/

Б.П. Симонов

路路

路路路路路路

路

盎

路

路路路

松

路路路路路路

(51) MIIK **C04B18/14** (2006.01) **E02D3/12** (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21), (22) Заявка: **2010121990/03, 28.05.2010**

(24) Дата начала отсчета срока действия

патента: **28.05.2010** Приоритет(ы):

(22) Дата подачи заявки: 28.05.2010

(45) Опубликовано: 27.12.2011

(56) Список документов, цитированных в

отчете о поиске: RU 94031142 A1,

27.05.1996. SU 1100262 A1, 30.06.1984. RU 2059585 C1, 10.05.1996. RU 2301300 C1, 20.06.2007. GB 1415524 A, 26.11.1975.

Адрес для переписки:

199106, Санкт-Петербург, В.О., 21 линия, 2, СПГГИ (ТУ), отдел интеллектуальной собственности и трансфера технологий (отдел ИС и ТТ)

(72) Автор(ы):

Толстунов Сергей Андреевич (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" (RU)

(54) КОМПОЗИЦИЯ ДЛЯ КОНСЕРВАЦИИ ПРОМЫШЛЕННЫХ ОТВАЛОВ

(57) Реферат:

Изобретение относится к горному делу и может быть использовано для консервации отвалов промышленных и бытовых отходов. Композиция включает заполнитель, портландцемент, адгезионный материал и воду. В качестве заполнителя используется отход литейного производства - отработанную формовочную землю, адгезионный материал - смесь жидкого стекла и жидкого сульфата алюминия, при следующем соотношении ингредиентов, мас.%:

Отработанная формовочная земля

82,5-87

Портландцемент

5,0-8,2

Адгезионный материал (смесь жидкого стекла и жидкого сульфата алюминия)

2-0,5

Вода Остальное

Технический результат - повышение физико-механических свойств, снижение водонасыщенности материалов при изменении температуры окружающей среды. 1 табл.

Изобретение относится к горному делу, а более конкретно к композиту для консервации промышленных отвалов отходов производства и отвалов бытовых отходов. В простейшем случае консервация отвалов промышленных и бытовых отходов состоит в возведении ограждения по периметру отвала путем проведения глубоких траншей и заполнения траншей строительными смесями или бетонами. После затвердевания бетона в траншеях производят установку подпорной стенки. Подпорная стенка препятствует движению по поверхности отвала грунтовых и дождевых вод. Отвалы могут содержать горючие отходы, которые самовозгораются и наносят ущерб окружающей среде. Поэтому подпорные стенки предотвращают распространение пожаров.

Известен способ консервации и изоляции техногенных месторождений (патент RU № 2301300 от 13.02.2006 г.). Способ состоит в создании искусственного покрытия техногенных месторождений защитной пленкой с последующей насыпкой слоями грунта. Недостаток способа - слабая защита поверхности месторождения от подпорных вод, трудность локализации и тушения пожаров от самовозгорания под слоями пород.

Известна композиция для устройства конструктивных слоев дорожных одежд (авт.св. № 655775 RU, опубл.30.12.1977 г.), включающая, мас.%:

Портландцемент

8-10

Глицериновый гудрон 0,05-0,15

Связной грунт

Остальное

Наиболее близкой по технической сущности и достигаемому эффекту является композиция (Петрашевский Р.Ц. Цементогрунт в дорожном строительстве Белоруссии. М.: Автомобильные дороги, 1965, № 7, с.13) по устройству дорожных оснований, выбранная в качестве прототипа, включающая, мас.%:

 Мелкий песок
 82-86

 Портландцемент
 7-10

 Вода
 Остальное

Недостатками известных композиций является их низкая прочность при сжатии и растяжении, низкая морозоустойчивость, а также высокая величина водонасыщения.

Техническим результатом предлагаемого изобретения является повышение физико-механических свойств и снижение водонасыщенности материалов при изменении температуры окружающей среды, используемых для консервации отвалов промышленных и бытовых отходов.

Технический результат достигается тем, что композиция, включающая заполнитель, портландцемент и воду, отличающаяся тем, что она согласно изобретению в качестве заполнителя содержит отход литейного производства - отработанную формовочную землю, адгезионный материал - смесь жидкого стекла и жидкого сульфата алюминия при следующем соотношении ингредиентов, мас.%:

Отработанная формовочная земля

82,5-87

Портландцемент

5,0-8,2 2-0,5

Адгезионный материал (смесь жидкого стекла и жидкого сульфата алюминия)

Вода Остальное

Отработанная формовочная земля (ОФЗ) является отходом литейного производства и после использования вывозится в больших количествах в отвалы. Она представляет собой порошкообразный материал темно-серого или черного цвета плотностью 2,41-2,48 г/см 3 , объемной насыпной массой 1,38-1,42 г/см 3 , пустотностью в неуплотненном состоянии 41-45%. Модуль крупности ее находится в пределах 1,1-1,2, что соответствует мелкому песку. Основным составляющим компонентом являются зерна кварца SiO_2 с примесью других окислов.

Химический состав ОФЗ включает, мас.%:

SiO_2	91-97
Fe_2O_3	0,3-1,2
Al_2O_3	0,8-5,5
CaO+MgO	0,5-3,1
Na ₂ O+K ₂ O	0,2-0,4
S	0,02-0,13

Потери при прокаливании 0,9-3,5

В состав исходных формовочных смесей непременно входит связующее. В качестве связующего могут применять как неорганические реагенты (например, жидкое стекло), так и органические вещества (карбамидные, фенолформальдегидные смолы, продукты лесо-нефтехимии).

В результате высокотемпературного (до 1400°С) воздействия на исходную формовочную смесь при заливке металла происходит выгорание большей части связующего и частичное его коксование с

образованием мелких частиц углерода, выражающегося величиной потерь при прокаливании, а также темной окраской ОФЗ. Зерна песка, содержащегося в формовочной смеси, при воздействии высоких температур претерпевают модификационные превращения (при 573° C α - кварц переходит в β – кварц; последний при температуре 870° C переходит в тридимит). При этом происходит быстрое расширение зерен кварца, сопровождающееся появлением в них значительного количества внутренних напряжений и растрескиванием. При разрушении песчинок открываются поверхности активного кремнезема. Последний при перемешивании отработанной формовочной земли с цементом и водой способен реагировать с известью, выделяющейся в процессе гидролиза цемента с образованием устойчивых

кристаллических соединений типа гидросиликатов кальция $mSiO_2+nCa(OH)_2+kH_2O^{-1}$ $nCaOmSiO_3(k+n)H_2O$.

Таким образом, помимо основных цементирующих компонентов, выделяющихся в результате гидролиза и гидратации цемента, появляется дополнительное цементирующее вещество, участвующее в структурообразовании материала. По гранулометрическому составу ОФЗ является одноразмерным материалом с содержанием частиц размером 0,1-0,4 мм в количестве 85-90%, т.е. ОФЗ соответствует одномерному мелкому песку.

Для повышения адгезионных свойств композиции и увеличения прочностных свойств при отрицательных температурах в состав вводится смесь 50% жидкого стекла и 50% жидкого сульфата алюминия. Сульфат алюминия в жидком виде $Al_2(SO_4)_3$ по TY - 4114-01-41654713 - 2000 смешивается с жидким стеклом $(Na_2Si_2O_3)_n$ в равных пропорциях и вместе с водой вводится в приготавливаемую смесь. Пример состава композиции. Готовят композицию для консервации, в качестве компонента которой используют портландцемент марки «400» и OΦ3 - продукт высокотемпературного воздействия на формовочную смесь на органическом (нефтехимическом) связующем. При этом содержание частиц размером 0,1 - 0,4 мм составляет 85%, а химический состав отработанной формовочной земли следующий, мас.%:

SiO_2	92
Fe_2O_3	1,2
Al_2O_3	2,5
CaO+MgO	2,5
Na_2O+K_2O	0,3
S	0,1

Потери при прокаливании 1,4

Соотношение компонентов композиций и результаты сравнительных испытаний представлены в таблице, причем необходимо учитывать, что увеличение водоцементного отношения при неизменной дозировке цемента в смеси ведет к снижению прочности укрепленного материала. Результаты испытаний образцов из предлагаемой композиции приводятся в таблице 1.

Соотношение компонентов. % по масов			Предел прочесств в возрасте 28 сут, МПа		Коэфф. маразастойкости	Водонасыщение %		
Sanoreurrens Flogr nas- umseur		Адгеононная добавка	Води	При скатии		На растижение при изгибе		
				До замораживания	После 25 циклов замора- живания и оттаквания			
				агаеный состав компо				
O#387	5,0	2.0	6.0	3.48	4,22	1,41	1,2	13,0
84.5	6,0	1,5	8.0	5.27	3,68	1,21	1,1	12,1
85.D	7.0	1,0	7.0	4.8	6.22	2.08	1,27	11,1
83.5	7.0	0.5	9.0	4.37	5.3	1.47	1,21	10.5
82.5	8.2	0.5	0.0	5.35	7,83	1,88	1,4	8,5
				Известный о	остав композиции			
ΠΜΟ* 84.0	6,5		7.5	2.85	2,77	0,97	0,82	16,1

Формула изобретения

Композиция для консервации отвалов промышленных и бытовых отходов, включающая заполнитель, портландцемент, адгезионный материал и воду, отличающаяся тем, что она в качестве заполнителя содержит отход литейного производства - отработанную формовочную землю, адгезионный материал смесь жидкого стекла и жидкого сульфата алюминия при следующем соотношении ингредиентов, мас.%

Отработанная формовочная земля	82,5-87
Портландцемент	5,0-8,2
Адгезионный материал (смесь жидкого стекла и жидкого сульфата алюминия)	2-0,5
Вода	Остальное