POCCINICRAM DEMEPANNIS

路路路路路路

松

密

松 密

母

母

密

密

松

松

母

路

母

密

母

密

松

密

密

密

母

母

母

母

路

密

密

母

路

松

母

母

路

斑

斑

路

路

密

密

密

密

斑

母

на изобретение

No 2441904

СЛОИСТЫЙ ТОПЛИВНЫЙ БРИКЕТ

Патентообладатель(ли): Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" (RU)

Автор(ы): **см. на обороте**

路路路路路

松

密

松 密

密

松

松

密

松

路

密

密

密

密

松

密

密

密

密

松

密

松

路

路

母

路

松

松

松

密

松

密

密

松

密

密

密

密

密

密

密

密

密

Заявка № 2010124609

Приоритет изобретения 15 июня 2010 г. Зарегистрировано в Государственном реестре изобретений Российской Федерации 10 февраля 2012 г. Срок действия патента истекает 15 июня 2030 г.

> Руководитель Федеральной службы по интеллектуальной собственности

> > Б.П. Симонов

(19)RU

⁽¹¹⁾ **2441904**

 $^{13)}$ C1

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (51) ΜΠΚ **C10L5/14** (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21), (22) Заявка: **2010124609/05**, **15.06.2010**

(24) Дата начала отсчета срока действия

патента: **15.06.2010** Приоритет(ы):

(22) Дата подачи заявки: 15.06.2010

(45) Опубликовано: 10.02.2012

(56) Список документов, цитированных в отчете о поиске: RU 2208044 A, 10.07.2003. SU 1759857 A1, 07.09.1992. RU 2009181 С1, 15.03.1994. RU 2345124 С1, 27.01.2009. GB 1174543 A, 17.12.1969. GB 1090704 A, 15.11.1967. GB 1137073 A, 18.12.1968.

Адрес для переписки:

199106, Санкт-Петербург, В.О., 21 линия, 2, СПГГИ (ТУ), отдел интеллектуальной собственности и трансфера технологий (отдел ИС и ТТ)

(72) Автор(ы):

Кусков Вадим Борисович (RU), Кускова Яна Вадимовна (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" (RU)

(54) СЛОИСТЫЙ ТОПЛИВНЫЙ БРИКЕТ

(57) Реферат:

Изобретение относится к брикетированию горючих органических веществ и может быть использовано для производства бытовых топливных брикетов, которые можно использовать для каминов, походных печек, для приготовления пищи, обогрева жилых и хозяйственных помещений, для отопления железнодорожных вагонов и т.д. Слоистый топливный брикет состоит из основного слоя, включающего каменный уголь, и зажигательного слоя, содержащего каменный уголь и нитрат. Брикет имеет продольные отверстия по всему брикету. Зажигательный слой содержит каменный уголь 10-15%, нитрат калия или дополнительно нитрат натрия 10-25%, дополнительно стеарин или парафин 5-15% и гексаметилентетраамин 45-75%. Зажигательный слой выполнен в виде линзы соосно с отверстиями, которые выполнены с уменьшением диаметра от центра к боковой поверхности брикета. Наличие в зажигательном слое каменного угля, гексаметилентетраамина и нитратов калия или натрия позволяет ему легко воспламеняться от низкоэнергетических источников тепла, таких как спичка и т.п. Линзовидная форма зажигательного слоя позволяет уменьшить его массу и, соответственно, снизить стоимость

брикета. Кроме того, такая форма увеличивает надежность сцепления основного и зажигательного слоев и надежность воспламенения основного слоя. 1 ил.

Изобретение относится к брикетированию горючих органических веществ и может быть использовано для производства бытовых топливных брикетов, предназначенных для каминов, различных бытовых печей, для приготовления пищи, обогрева жилых и хозяйственных помещений, для отопления железнодорожных вагонов, бытовок и т.п.

Известен «Влагоустойчивый топливный брикет и способ его получения» (патент № 2345124, опубл. 27.01.2009) на основе коксовой, антрацитовой мелочи и связующего - мелассы содержит дополнительно термоантрацит при соотношении компонентов в мас.%: 20-25 антрацита, 25-30 термоантрацита, 5-16 мелассы, остальное - коксовая мелочь. Компоненты дозируют, смешивают, брикетируют и сушат.

Основные недостатки такого брикета в сложности формования брикета и невозможности получения брикетов, зажигающихся от низкоэнергетических источников тепла.

Известен «Слоистый топливный брикет» (патент 2009181, опубл. 15.03.94), который состоит из основного угольного слоя, промежуточного слоя, включающего, мас.%:

древесный уголь или торф 45-55, каменный уголь 55-45, и зажигательного слоя, включающего, мас.%: нитрат калия или натрия 5-25, нитрат бария или аммония 15-35, каменный уголь 10-30; торф или древесный уголь до 100%, что обеспечивает повышение надежности загорания брикета и снижение содержания углерода, выделяемого при горении брикета.

Основные недостатки брикета в сложности его формования, токсичности или гигроскопичности зажигательного слоя, ненадежном соединении слоев, неполным сгорании горючей массы и сравнительно высоких выбросах в атмосферу вредных веществ.

Известен «Легковоспламеняющийся топливный брикет» (патент № 2208044, опубл. 10.07.2003). Основной слой этого брикета состоит из каменного угля, а зажигательный слой содержит гексаметилентетраамин в количестве 25-50%, нитрат калия 5-20%, каменный уголь до 100%; в качестве связующего используют термопластичный 3,4-полиизопрен или эпоксидную смолу, модифицированную введением низкомолекулярного жидкого бутадиенового каучука с карбоксильными группами в соотношении смола - каучук 1 моль на 0,08-0,1.

Основные недостатки брикета в сравнительно высокой стоимости из-за использования большого количества дорогостоящих компонентов, ненадежном соединении слоев, ненадежном воспламенении основного слоя, недостаточно полном сгорании горючей массы брикета и как следствие увеличение вредных выбросов в атмосферу.

Известен «Слоистый топливный брикет» (а.с. SU № 1759857, опубл. 07.09.92, бюл. 33), принятый за прототип, имеющий основной слой, состоящий из каменного угля и торфа, и зажигательный слой, состоящий из каменного угля, торфа, нитрата калия и нитрата бария. Брикет имеет продольные отверстия равного диаметра.

Основные недостатки брикета в ненадежном соединении слоев, ненадежном воспламенении основного слоя, низкой его влагостойкости, сравнительно большой массы зажигательного слоя и, следовательно, увеличении стоимости брикета.

Техническим результатом изобретения является увеличение надежности сцепления основного и зажигательного слоев, более надежном воспламенении основного слоя, повышении влагостойкости, более полном сгорании горючей массы и как следствие снижение выбросов в атмосферу.

Технический результат достигается тем, что в слоистом топливном брикете, состоящем из основного слоя, зажигательного слоя, содержащего каменный уголь и нитрат имеет продольные отверстия по всему брикету, зажигательный слой содержит каменный уголь 10-15%, нитрат калия или дополнительно нитрат натрия 10-25%, дополнительно стеарин или парафин 5-15% и

гексаметилентетрааминн 45-75%, при этом зажигательный слой выполнен в виде линзы соосно с отверстиями, которые выполнены с уменьшением диаметра от центра к боковой поверхности брикета.

Устройство брикета поясняется чертежом, на котором изображен вид брикета сверху и его разрез. Брикет имеет основной слой (1), зажигательный слой (2) и продольные отверстия (3). На данном чертеже изображен брикет, изготовленный в виде цилиндра и имеющий отверстия, выполненные с уменьшением их диаметра от центра к боковой поверхности брикета.

Наличие в зажигательном слое каменного угля, гексаметилентетраамин и нитратов калия или натрия позволяют ему легко воспламеняется от низкоэнергетических источников тепла, таких как спичка и т.п. При содержании каменного угля в зажигательном слое менее 10% зажигательный слой сгорает слишком быстро, что снижает надежность воспламенения основного слоя, при содержании каменного угля более 15% зажигательный слой плохо воспламеняется.

Содержание нитратов калия или натрия менее 10% ухудшает воспламенения зажигательного слоя, содержание более 25% ведет к слишком быстрому сгоранию зажигательного слоя, при этом основной слой не успевает воспламениться.

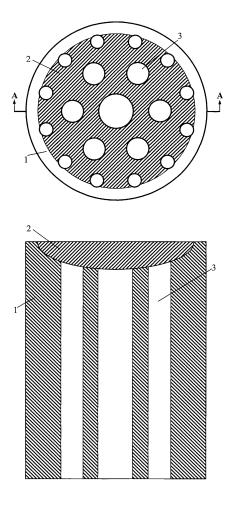
Количество гексаметилентетраамина менее 45% ухудшает воспламеняемость зажигательного слоя, т.к. его недостаток приходится компенсировать увеличением количества другого (или других) компонентов, а к чему это ведет сказано выше. Количество гексаметилентетраамина более 75% также ухудшает воспламеняемость брикета.

Наличие в зажигательном слое 5-15% стеарина или парафина повышает влагостойкость зажигательного слоя. Кроме того, при сушке эти вещества плавятся и выступают как связующее вещество. Содержание стеарина или парафина меньше 5% не позволяет повысить влагостойкость, содержание более 15% увеличивает количество дыма при горении.

Выполнение зажигательного слоя в виде линзы соосно с отверстиями позволяет снизить расход сравнительно дорогостоящих компонентов зажигательного слоя за счет уменьшения удельной доли зажигательного слоя в топливном брикете. Существенно повышается надежность сцепления зажигательного и основного слоев, т.к. зажигательный слой нигде не выступает из тела топливного брикета. Надежность воспламенения основного слоя увеличивается потому, что центральная зона зажигательного слоя в виде линзы на торцевой поверхности брикета глубже погружена в тело брикета поэтому пламя после начального зажигания достаточно глубоко проникает в тело брикета, и большая, чем по прототипу масса основного слоя успевает нагревается до температуры, необходимой для его горения.

Соосные отверстия брикета увеличивает надежность горения основного слоя брикета и позволяет снизить вредные выбросы в атмосферу. Уменьшение диаметра отверстий от центра к периферии обеспечивает оптимальную подачу кислорода к различным участкам брикета. В центральной части брикета кислорода для горения, поступающего через отверстия нужно больше, а чем ближе к периферии - тем меньше. Соответственно в заявляемом изобретении горение оптимизируется.

Брикет рассчитан на горение «сверху - вниз». Т.е. пламя от первоначально подожженного зажигательного слоя, расположенного в верхней торцевой части топливного брикета постепенно распространяется вниз. Это также снижает выбросы в атмосферу, т.к. возгоняющиеся из расположенных ниже зоны горения слоев брикета летучие вещества проходят сквозь высокотемпературную зону и полнее сгорают.


Пример. Слоистый топливный брикет изготавливался на основе длиннопламенного угля Печорского угольного бассейна. Основной слой формовался только из угля, измельченного до 2 мм и связующего. После перемешивания угля со связующим шихта поступает в пресс-форму, где при помощи штемпеля со специальным линзовидным выступом материал предварительно уплотняется и в шихте формируется линзовидное углубление. Компоненты шихты зажигательного

слоя измельчаются до 0,1 мм, перемешиваются и загружаются в это углубление. После этого прессуется брикет штемпелем, имеющим выдвигающиеся стержни. Затем брикет сушится при температуре 115-130°C в течение 2 часов. Размеры брикета могут варьироваться. В частности, изготавливались брикеты в виде цилиндра, диаметром 90 мм, высотой от 80 до 100 мм. Брикет имел 19 отверстий различных диаметров: одно отверстие диаметром 18 мм в центре брикета, 6 - диаметром 11 мм в средней зоне брикета, и 12 - диаметром 7 мм по периферии.

Брикет надежно воспламенялся, устойчиво и бездымно горел. После длительного хранения зажигательный слой не отваливался от основного. Основной слой брикета по прототипу иногда гас (при горении по схеме «сверху - вниз». При горении по схеме «снизу - вверх» наблюдались выбросы в атмосферу, быстрое и недостаточно полное сгорание горючей массы. Кроме того, после длительного хранения зажигательный слой некоторых брикетов отваливался от основного.

Формула изобретения

Слоистый топливный брикет, состоящий из основного слоя, включающий каменный уголь, зажигательного слоя, содержащего каменный уголь и нитрат, и имеющий продольные отверстия по всему брикету, отличающийся тем, что зажигательный слой содержит каменный уголь 10-15%, нитрат калия или дополнительно нитрат натрия 10-25%, дополнительно стеарин или парафин 5-15% и гексаметилентетраамин 45-75%, при этом зажигательный слой выполнен в виде линзы соосно с отверстиями, которые выполнены с уменьшением диаметра от центра к боковой поверхности брикета.

