POCCINICKAM PELLEPANDINA

密密密密密

路路

容

密

密

路

密

路路

松

容

密

母

密

松

密

母

母

路路

路

密

母

密

密

密

路路

路路

密

路路

路

容

路路

路

安

路

路

路

母

на изобретение

№ 2462417

СПОСОБ ПОЛУЧЕНИЯ МАЛОЩЕЛОЧНОГО ГЛИНОЗЕМА С ВЫСОКИМ СОДЕРЖАНИЕМ α-МОДИФИКАЦИЙ Al₂O₃

Патентообладатель(ли): Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет) (RU)

Автор(ы): см. на обороте

路路路路路

路路

密

路路

母

密

斑

松

密

密

母

密

密

母

母

松

密

松

密

松

路路

母

松

安安安安

容

斑

路路路路

路路

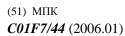
容

斑

Заявка № 2011108343

Приоритет изобретения 03 марта 2011 г.

Зарегистрировано в Государственном реестре изобретений Российской Федерации 27 сентября 2012 г.


Срок действия патента истекает 03 марта 2031 г.

Руководитель Федеральной службы по интеллектуальной собственности

Б.П. Симонов

 $^{13)}$ C1

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21), (22) Заявка: 2011108343/05, 03.03.2011

(24) Дата начала отсчета срока действия

патента: **03.03.2011** Приоритет(ы):

(22) Дата подачи заявки: 03.03.2011

(45) Опубликовано: 27.09.2012

(56) Список документов, цитированных в

отчете о поиске: RU 2047561 C1,

10.11.1995. SU 176273 A1, 01.01.1965. RU 2047561 C1, 10.11.1995. CN 1184078 A, 10.06.1998. EP 1037855 A1, 27.09.2000.

Адрес для переписки:

199106, Санкт-Петербург, В.О., 21 линия, 2, СПГГИ (ТУ), отдел интеллектуальной собственности и трансфера технологий (отдел ИС и ТТ), пат.пов. А.П. Яковлеву

(72) Автор(ы):

Дубовиков Олег Александрович (RU), Сизяков Виктор Михайлович (RU), Теляков Наиль Михайлович (RU), Николаева Надежда Валерьевна (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ МАЛОЩЕЛОЧНОГО ГЛИНОЗЕМА С ВЫСОКИМ СОДЕРЖАНИЕМ α -МОДИФИКАЦИЙ Al_2O_3

(57) Реферат:

Изобретение относится к области химии и может быть использовано в производстве малощелочного глинозема, полученного из карбонизационного или декомпозиционного гидроксида алюминия. Щелочесодержащий гидроксид алюминия отмывают кипящим 5%-ным раствором борной кислоты и соотношении по массе жидкой фазы к твердой Ж:T=5:1-6:1. Затем пульпу фильтруют и без промывки подвергают прокалке при температуре 1275-1325°C в течение одного часа. Изобретение позволяет снизить энергетические затраты. 2 табл., 1 пр.

Изобретение относится к производству глинозема, в частности к производству малощелочного глинозема с высоким содержанием α -модификации Al_2O_3 , полученного из карбонизационного или декомпозиционного гидроксида алюминия.

Известен способ получения мелкокристаллического корунда (Патент RU № 2077157, опубл. 10.04.1997 г.). Способ включает термопаровую обработку гидроксидов или оксидов алюминия при температуре 350-450°С и давлении паров воды 30-400 ат в присутствии активатора ионного типа. В качестве активатора используют соединения, содержащие анионы, выбранные из группы нитратов, сульфатов, хроматов, боратов, ацетатов и гидроксил-ионов.

Недостатком этого способа является проведение процесса в автоклавных условиях, что требует применения сложного и дорогостоящего оборудования, работающего под высоким давлением.

Известен способ получения металлургического глинозема (Патент SU № 1307751, опубл. 10.06.1999 г.). Способ включает обработку щелочесодержащего гидроксида алюминия раствором фтористого алюминия при 50-100°С в течение 0,5-1,0 часа и кальцинацию при 700-800°С.

Положительное влияние фтористых солей и борной кислоты на фазовые превращения Y → (глинозема известно (Гопиенко Г.Н., Заварицкая Т.А., Пашкевич Л.А. Влияние различных минерализаторов на образование α -Al₂O₃ из гидраргиллита и бемита. Цвет, металлы, 1970, № 4, с.53-55). Действительно таким образом можно повысить качество глинозема и экономичность процесса, однако при температуре кальцинации 700-800°C содержание α -Al₂O₃ в конечном продукте (из-за малой скорости фазового превращения Y → α -Al₂O₃) всего 25-60% (Наумчик А.Н., Дубовиков О.А. Производство глинозема из низкокачественного сырья. Учебное пособие. - Л.: изд. ЛГИ, 1987, 99 с). Главным недостатком способа является малое содержание α -Al₂O₃.

Известен способ получения малощелочного тонкодисперсного α-глинозема из оборотной пыли электрофильтров печей кальцинации (Патент RU № 2241672, опубл. 10.12.2004 г.). Способ включает выщелачивание, фильтрацию и прокаливание при температуре 1200°С. Выщелачивают оборотную пыль при температуре 80°С, а прокаливание ведут в две стадии: от 20°С до 800°С со скоростью 150°С/ч, от 800°С до 1200°С со скоростью 250°С/ч. Прокаливают оборотную пыль в присутствии минерализаторов, например AIF ₃.

Недостатком способа является то, что оборотная пыль уже подверглась термической обработке с затратой на это тепловой энергии, а последующая прокалка еще больше увеличит энергетические затраты.

Известен способ получения малощелочного глинозема (Патент RU № 2047561, опубл. 10.11.1995 г.), принятый за прототип. Способ включает термообработку гидроксида алюминия, отмывку от щелочных примесей, фильтрацию, прокалку в присутствии минерализатора. При термообработке используют карбонизационный гидроксид алюминия и ведут ее при температуре 1050-1150°С. В качестве минерализатора используют фторид алюминия или смесь фторида алюминия и борной кислоты в количестве 0,3-0,5% от массы глинозема при массовом соотношении в смеси фторида алюминия к борной кислоте (0,5:1,5).

Недостатком способа является двухстадийная термическая обработка со значительными энергетическими затратами.

Технический результат заключается в упрощении технологии при содержании α-модификации в глиноземе не менее 95% и снижении энергетических затрат.

Технический результат достигается тем, что в способе получения малощелочного глинозема с высоким содержанием α -модификации Al_2O_3 , включающем отмывку щелочесодержащего гидроксида алюминия от щелочных примесей, фильтрацию, прокалку в присутствии минерализатора - борной кислоты, гидроксид алюминия отмывают кипящим 5%-ным раствором борной кислоты при соотношении по массе жидкой фазы к твердой X:T=5:1-6:1, а после фильтрации прокаливают в течение часа при температуре $1275-1325^{\circ}C$.

Отмывка щелочесодержащего гидроксида алюминия 5%-ным (мас.) раствором борной кислоты уменьшает содержание межкристаллитной щелочи в гидроксиде алюминия и устраняет ее отрицательное влияние на скорость образования α-Al₂O₃ (Арлюк Т.А., Телятников Г.В., Кухоткина Т.Н. О факторах, влияющих на скорость кристаллизации глинозема. Труды ВАМИ, 1974, № 88, с.105-109). При отмывке щелочесодержащего гидроксида алюминия раствором борной кислоты происходит нейтрализация щелочи по реакции

 $4H_3BO_3+4H_2O+Na_2O=Na_2B_4O_7*10H_2O_1$

с образованием тетрабората натрия, который при последующей прокалке переходит в газовую фазу (Глинка Н.Л. Общая химия. Издание 12. М-Л.: Химия, 1965, с.601). Оставшаяся после фильтрации без промывки в гидроксиде алюминия борная кислота является минерализатором при последующей прокалке.

5%-ная (мас.) концентрация раствора борной кислоты обусловлена максимальной растворимостью борной кислоты при 20°С, при обработке раствором с концентрацией выше 5% (мас.) на фильтре выкристаллизовывается борная кислота.

Повышение температуры раствора борной кислоты интенсифицирует взаимодействие кислоты и щелочи, а 100°C это максимальная температура, которая еще не требует применения автоклавов.

Соотношение по массе жидкой фазы к твердой Ж:T=5:1-6:1 позволяет осуществить отмывку щелочесодержащего глинозема без значительного увеличения материальных потоков при отмывке и фильтрации.

Прокаливание отфильтрованного и непромытого гидроксида алюминия в течение часа при температуре $1275-1325^{\circ}\text{C}$ - оптимальное соотношение экспозиции и температуры, которое позволило получить в малощелочном глиноземе не менее 95% α -Al₂O₃ без увеличения на это энергетических затрат (получено экспериментально).

Реализация предлагаемого способа в промышленных условиях заключается в следующем: в мешалку подают щелочесодержащий (карбонизационный или декомпозиционный) гидроксид алюминия и кипящий раствор 5%-ной (мас.) борной кислоты при соотношении по массе жидкой фазы к твердой Ж:Т=5:1. Пульпа, без временной выдержки в мешалке, фильтруется и влажный гидроксид алюминия, содержащий борную кислоту и тетраборат натрия, подвергают прокаливанию в трубчатых вращающихся печах при температуре 1300°С в течение часа. Минерализатором при прокалке является борная кислота, оставшаяся во влажном гидроксиде алюминия.

Пример. Достигаемый технический результат подтверждается лабораторными исследованиями. В перемешиваемый в мешалке и нагретый до 100°C раствор 5%-ной (мас.) борной кислоты загружался карбонизационный гидроксид алюминия в соотношении по массе жидкой фазы к твердой Ж:Т=5:1. Сразу горячая пульпа фильтровалась на воронке Бюхнера, без промывки сушилась и прокаливалась в муфельной печи при 1300°C в течение часа. Параллельно, без обработки раствором борной кислоты проводилась эталонная серия опытов. Полученный после прокалки малощелочной глинозем исследовался кристаллооптическим и рентгеноструктурным методами анализа.

Дополнительно малощелочной глинозем по способу и глинозем эталонной серии опытов подвергались химическому опробованию, базирующемуся на общеизвестном положении - инертности α -модификации Al_2O_3 при гидрометаллургических переделах. Влияние отмывки щелочесодержащего гидроксида алюминия борной кислотой и прокалки в присутствии минерализатора (борной кислоты) на результаты химического опробования приведены в табл.1. Отмывка гидроксида алюминия 5%-ным (мас.) раствором борной кислоты при 100° C (III вариант) с последующей прокалкой при 1300° C в течение часа позволяет резко уменьшить переход Al_2O_3 в раствор при контрольном химическом опробовании - менее 1%.

В аналогичных условиях проводилось химическое опробование проб отечественных и зарубежных специальных марок глубокопрокаленного глинозема, содержащих α -модификации Al_2O_3 не менее 95%. Результаты химического опробования специальных марок глинозема приведены в табл.2. Рентгеноструктурный и кристаллооптический анализы показали полную идентичность малощелочного глинозема специальных марок, содержащих α -модификации Al_2O_3 не менее 95%, и малощелочного глинозема с высоким содержанием α -модификации Al_2O_3 , полученного по предлагаемому способу.

Таким образом, при упрощении технологии за счет одностадийной термической обработки и при меньших энергетических затратах достигают содержания α -модификации Al_2O_3 не менее 95%.

Способ полу	MANUA MOTON	anamara ri	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DI IOOKIIN OOTON	Manifold of M	Таблица 1	
Chocoo hony	чения малощ	слочного гл	линозема с Al ₂ O ₃	высоким содер	жанисм и-м	одификации	
Условия прокалки		Hanaara	Содержание в растворе, г/л			Извлечение	
Температура, °C	Выдержка, мин	Навеска,	Na ₂ O _{общ}	Na ₂ O _K	Al ₂ O ₃	в раствор Al ₂ O ₃ , %	
1	2	3	4	5	6	7	
Без отмывки борной кислотой							
900	нет	5,0378	300,7	298,1	20,2	35,19	
1000	нет	4,9596	297,6	295,1	16,3	29,17	
1100	нет	4,9968	322,4	317,7	15,0	24,57	
1200	нет	4,5922	305,3	301,1	12,5	23,53	
1250	нет	6,4290	313,2	311,7	5,7	7,47	
1300	нет	5,0014	280,5	-	1,1	2,07	
1300	60	4,9629	256,0	252,3	1,2	2,20	
I вариант отмывки борной кислотой							
900	нет	4,9999	265,0	260,0	34,4	61,38	
1000	нет	5,0005	268,0	266,6	17,1	30,16	
1100	нет	5,0086	242,4	239,0	19,1	37,19	
1200	нет	4,9996	323,7	322,0	23,6	34,47	
1250	нет	5,0022	320,7	285,2	26,1	38,60	

308,2

306,9

23,4

35,96

4.9914

нет

1300

1300	60	5,0042	257,3	256,0	4,26	7,82		
1300	60	4,5538	257,5	256,5	4,10	8,26		
II вариант отмывки борной кислотой								
1100	60	5,4346	296,6	289,8	14,0	22,92		
1300	60	5,0170	251,5	250,0	2,9	5,43		
1300	60	3,8019	263,5	262,0	5,5	12,98	1	
III вариант отмывки борной кислотой								
1100	нет	5,0010	296,6	296,0	15,4	24,54		
1300	нет	4,9924	281,6	280,5	2,0	3,36		
1300	60	4,9866	253,0	248,0	0,27	0,51		
1300	60	4,9968	266,5	266,0	0,37	0,66	1	
1300	60	5,0022	254,0	253,0	0,42	0,78	1	
1300	60	4,9460	248,0	247,0	0,40	0,77		

					Таблица 2		
Способ полу	Способ получения малощелочного глинозема с высоким содержанием -модификации						
$\mathrm{Al_2O_3}$							
Проба	Навеска, г	Содер	Извлечение				
	Павсска, Г	No O	Na ₂ O _{общ} Na ₂ O _к Al ₂ O ₃	A1.O	в раствор		
		Na ₂ O _{общ}		$A_{12}O_3$	Al ₂ O ₃ , %		
1	2	3	4	5	6		
Чистый щелочной	нет	291,3	290,1	нет	нет		
	нет	308,7	308,2	нет	нет		
раствор без	нет	291,7	290,6	нет	нет		
проб	нет	302,1	301,5	нет	нет		
Англия	2,1770	310,2	306,9	0,15	0,59		
Венгрия	3,4318	298,1	291,4	0,10	0,26		
Россия	3,9121	292,1	285,2	0,15	0,35		
США	1,3955	302,6	300,7	0,15	0,94		
Япония	5,9598	286,1	280,5	0,18	0,28		

Формула изобретения

Способ получения малощелочного глинозема с высоким содержанием α -модификаций Al_2O_3 , включающий отмывку щелочесодержащего гидроксида алюминия от щелочных примесей, фильтрацию, прокалку в присутствии минерализатора - борной кислоты, отличающийся тем, что гидроксид алюминия отмывают кипящим 5%-ным раствором борной кислоты при соотношении по массе жидкой фазы к твердой Ж:Т 5:1-6:1, а после фильтрации прокаливают в течение часа при температуре 1275-1325°C.