POCCHIÜCKASI ФЕДЕРАЩИЯ

路路路路路路

密

密

密

岛

密

密

路路

密

密

密

密

密

密

密

密

斑

斑

密

密

密

密

路路

器

路

路

岛

密

岛

密

路

岛

密

路

路

母母母母母母母

密

密

密

路

密

密

岛

密

密

密

密

密

斑

斑

路路

斑

密

密

松

松

松

松

怒

岛

路

松

路路路路路

密

密

岛

岛

岛

密

密

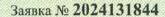
密

密

密

路路

密


MATERIT

на изобретение **№ 2840362**

СПОСОБ УПРАВЛЕНИЯ ПОТОКАМИ ЭЛЕКТРОНОВ В ТРИОДЕ

Патентообладатель: Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет императрицы Екатерины II" (RU)

Авторы: Грабовский Артем Юрьевич (RU), Мустафаев Александр Сеит-Умерович (RU), Штода Евгения Викторовна (RU)

Приоритет изобретения 23 октября 2024 г. Дата государственной регистрации в Государственном реестре изобретений Российской Федерации 22 мая 2025 г. Срок действия исключительного права на изобретение истекает 23 октября 2044 г.

Руководитель Федеральной службы по интеллектуальной собственности

A.

Ю.С. Зубов

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) СПК **H01J 17/54 (2025.01)**

(21)(22) Заявка: 2024131844, 23.10.2024

(24) Дата начала отсчета срока действия патента: 23.10.2024

Дата регистрации: **22.05.2025**

Приоритет(ы):

(22) Дата подачи заявки: 23.10.2024

(45) Опубликовано: 22.05.2025 Бюл. № 15

Адрес для переписки:

199106, Санкт-Петербург, В.О., 21 линия, 2, ФГБОУ ВО СПГУ, Патентно-лицензионный отдел

(72) Автор(ы):

Грабовский Артем Юрьевич (RU), Мустафаев Александр Сеит-Умерович (RU), Штода Евгения Викторовна (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет императрицы Екатерины II" (RU)

4

0

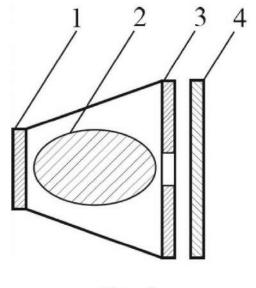
ယ

တ

(56) Список документов, цитированных в отчете о поиске: RU 2584691 C1, 20.05.2016. RU 2221305 C1, 10.01.2004. RU 2395866 C1, 27.07.2010. RU 2581618 C1, 20.04.2016. US 8288950 B2, 16.10.2012. US 9064671 B2, 23.06.2015. WO 2013186523 A1, 19.12.2013.

(54) СПОСОБ УПРАВЛЕНИЯ ПОТОКАМИ ЭЛЕКТРОНОВ В ТРИОДЕ

(57) Реферат:


Изобретение относится к области плазменной энергетики. Технический результат - увеличение силы тока, напряжения и электрической мощности в силовых цепях. В способе управления потоками электронов в триоде, заполненном гелием, создают разряд непосредственно между катодом и управляющим электродом через отверстие в аноде. Между катодом и анодом зажигают низковольтный пучковый разряд при нулевом токе на управляющий электрод, при этом создают между ними разность потенциалов не менее потенциала ионизации гелия в 24,7 В стабилизированным источником напряжения, за

счет формируется распределение потенциала с резкими скачками вблизи катода и анода и областью квазинейтральности в основной части зазора катод-анод. Далее варьируют потенциал анода U_a от 5 до 20 В и потенциал управляющего электрода U_{yy} от 35 до 40 В внешними источниками напряжения, концентрацию электронов регулируют, изменяя давление гелия от 1 до 5 Торр системой редукторов и игольчатого натекателя. При этом ток возрастает от 1,3 до 4 раз, напряжение от 2 до 5 раз, а электрическая мощность от 1,3 до 20 раз. 4 ил., 3 табл.

 $\overline{\zeta}$

2840362

⊃

Фиг. 1

<u>ဂ</u>

2840362

⁽¹⁹⁾ RII ⁽¹¹⁾

2 840 362⁽¹³⁾ C1

(51) Int. Cl. *H01J 17/54* (2006.01)

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(52) CPC **H01J 17/54 (2025.01)**

(21)(22) Application: **2024131844**, **23.10.2024**

(24) Effective date for property rights:

23.10.2024

Registration date: 22.05.2025

Priority:

(22) Date of filing: 23.10.2024

(45) Date of publication: 22.05.2025 Bull. № 15

Mail address:

199106, Sankt-Peterburg, V.O., 21 liniya, 2, FGBOU VO SPGU, Patentno-litsenzionnyj otdel

(72) Inventor(s):

Grabovskii Artem Iurevich (RU), Mustafaev Aleksandr Seit-Umerovich (RU), Shtoda Evgeniia Viktorovna (RU)

(73) Proprietor(s):

federalnoe gosudarstvennoe biudzhetnoe obrazovatelnoe uchrezhdenie vysshego obrazovaniia "Sankt-Peterburgskii gornyi universitet imperatritsy Ekateriny II" (RU)

(54) METHOD OF CONTROLLING ELECTRON FLOWS IN TRIODE

(57) Abstract:

2

ဖ

က

0

4

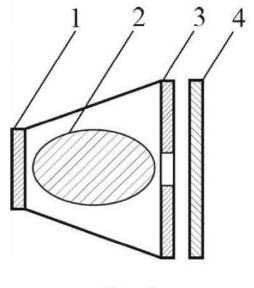
 ∞

FIELD: plasma power engineering.

SUBSTANCE: in the method of controlling electron flows in a triode filled with helium, a discharge is created directly between the cathode and the control electrode through a hole in the anode. Between cathode and anode low-voltage beam discharge is ignited at zero current to control electrode, wherein a potential difference between them is not less than the helium ionisation potential of 24.7 V by the stabilized voltage source, due to this, potential distribution is formed with sharp jumps near the cathode and the anode and the quasi-neutrality region in the main part of the cathode-

anode gap. Next, varying the anode potential U_a from 5 to 20 V and the control electrode potential U_{ce} from 35 to 40 V by external voltage sources, concentration of electrons is controlled by varying helium pressure from 1 to 5 Torr by the system of pressure control valves and needle inlet. Current increases from 1.3 to 4 times, voltage from 2 to 5 times, and electric power from 1.3 to 20 times.

EFFECT: increase of current force, voltage and electric power in power circuits.


1 cl, 4 dwg, 3 tbl

2 8 4

_

ယ

6 2

Фиг. 1

<u>ဂ</u>

2840362

8

Изобретение относится к плазменной энергетике к области усиления тока, напряжения и электрической мощности и может быть использовано при создании высокоэффективных низковольтных сильноточных цепей, эксплуатируемых в условиях высокого уровня радиации и температуры окружающей среды - на космических и наземных ядерных энергетических установках, в системах противорадиационной защиты, на предприятиях по переработке радиоактивных полезных ископаемых и АЭС.

Известен способ усиления электронных токов (авторское свидетельство СССР SU 70172 A1, опубл. 31.01.1948), в котором электронные токи в виде пучка быстрых электронов в вакууме направляют на поверхность диэлектрика, испускающего электроны вторичной эмиссии под действием вспомогательного пучка медленных электронов, и используют ток проводимости в диэлектрике, возникающий под действием усиливаемого тока. Этот ток проводимости растет линейно в широких пределах вместе с ростом тока быстрых электронов и может в десятки раз его превышать при соответствующем подборе энергии быстрых электронов.

Недостатком способа является использование твердотельных элементов, теряющих эффективность в условиях высокого уровня радиациии температуры окружающей среды.

Известен способ управления током в импульсных газоразрядных коммутаторах (патент РФ №2152115, опубл. 27.06.2000), при котором управляющий электрод и электрод, коммутирующий ток расположены в изолированных друг от друга объемах, а управляющее воздействие осуществляется волной ионизации. При данном способе управления образование плазмы в межэлектродном пространстве (между катодом и анодом) происходит со скоростью, значительно превышающей скорость образования плазмы при ионизации электронным ударом.

Недостатками являются сложность получения и контроля оптимальных условий формирования волны ионизации, а именно реализация контроля давлений в каждом из изолированных объемов, а также повышенные требования к питающей аппаратуре.

25

Известен способ управления током в полупроводниковых приборах - полевых транзисторах или биполярных транзисторах с изолированными затворами (патент РФ № 2523598, опубл. 20.07.2014), в котором между источником и приемником управляющей информации и энергии создается беспроводной энерготранспортирующий канал в электроизолирующей среде светопроводящего стержня путем размещения на одном из торцов стержня мощного светодиода, а на другом торце - матричного солнечного элемента. Далее при помощи светодиода в стержне возбуждают световой поток, его энергию преобразуют в матричном солнечном элементе в энергию электрического тока, с помощью которой питают затвор транзистора, при этом управляющую информацию кодируют путем изменения времен включенного и выключенного состояний светодиода.

Недостатком способа является нестабильность параметров управления затворами транзисторов вследствие помех, возникающих в энерготранспортирующем канале, при реализации способа в условиях высоких температур, в агрессивных средах, а также в условиях высокого уровня радиации.

Известен способ стабилизации высоковольтного напряжения на базе разряда с сужением плазменного канала (патент РФ №2584691, опубл. 20.05.2016 г.), принятый за прототип, и заключающийся в создании основного разряда непосредственно между катодом и управляющим электродом плазменного триода через отверстие в основном аноде, подаче на основной анод отрицательного потенциала, и регулировке стабилизируемого напряжения в диапазоне от 10 до 100 В путем изменения давления

гелия либо отрицательного потенциала на основном аноде. Способ реализован в трехэлектродной конструкции, где анод выполняют с отверстием, а управляющий электрод устанавливают вне разрядного промежутка за анодом, соосно с ним.

Недостатками прототипа являются техническая сложность поджига разряда непосредственно на управляющий электрод через анодное отверстие и ухудшение качества стабилизации напряжения при значительных потенциалах основного анода.

Техническим результатом является увеличение силы тока, напряжения и электрической мощности в силовых цепях.

Технический результат достигается тем, в триоде заполненном гелием, при котором создают разряд непосредственно между катодом и управляющим электродом через отверстие в аноде, между катодом и анодом зажигают низковольтный пучковый разряд при нулевом токе на управляющий электрод, при этом создают между ними разность потенциалов не менее потенциала ионизации гелия в 24,7 В стабилизированным источником напряжения, за счет этого формируется распределение потенциала с резкими скачками вблизи катода и анода и областью квазинейтральности в основной части зазора катод-анод, далее варьируют потенциал анода U_a от 5 до 20 В и потенциал управляющего электрода U_{y_9} от 35 до 40 В внешними источниками напряжения, а концентрацию электронов регулируют, изменяя давление гелия от 1 до 5 Торр системой редукторов и игольчатого натекателя, при этом ток возрастает от 1,3 до 4 раз, напряжение от 2 до 5 раз, а электрическая мощность от 1,3 до 20 раз, значения их приращений в основной цепи регистрируют цифровыми мультиметрами.

Способ усиления поясняется следующими фигурами:

- фиг. 1 режим горения разряда в триодном приборе;
- фиг. 2 распределение потенциала в межэлектродных зазорах триода (P_{He} =3 Торр, U_{v_3} =35 В).
 - фиг. 3 зависимость $K_i=\Delta i_a/\Delta i_{y_3}$ от анодного потенциала в диапазоне давлений гелия от 1 до 5 Topp (i_{y_3} =0,1 A, U_{y_3} =35 B);
 - фиг. 4 зависимость ΔU_a от ΔU_{v_3} в диапазоне давлений гелия от 1 до 5 Торр, где:
 - 1 катод;

30

- 2 диффузное свечение плазмы;
- 3 анод;
- 4 управляющий электрод.

Способ осуществляется следующим образом. Вначале, межэлектродный промежуток триода заполняют спектрально-чистым гелием, при этом во избежание неустойчивых режимов работы электрической цепи давление устанавливают равным 1 Торр и контролируют это значение при помощи манометрического преобразователя. Далее между катодом 1 (фиг. 1) и анодом 2 зажигают низковольтный пучковый разряд 3 при нулевом токе на управляющий электрод 4, путем создания между ними разности потенциалов не менее потенциала ионизации гелия в 24,7 В при помощи стабилизированного источника напряжения. За счет этого формируют распределение потенциала с резкими скачками вблизи катода и анода и областью квазинейтральности в основной части зазора катод-анод. Эмитированные катодом электроны ускоряют на прикатодном скачке потенциала до энергий не менее 2 эВ и формируют плотный пучок, ионизирующий атомы гелия для рождения медленных электронов с энергией не менее 2 эВ. После этого от индивидуального стабилизированного источника питания на управляющий электрод подают потенциал U_{y_3} не менее 35 В, зажигают разряд между

катодом и управляющим электродом через отверстие в основном аноде и формируют скачок потенциала вблизи отверстия анода, ускоряющий медленные электроны, и обеспечивающий их ток на управляющий электрод. Начальное значение силы тока медленных электронов на управляющий электрод устанавливают не менее 0,1 А. Далее осуществляют усиление тока, напряжения и электрической мощности в цепи. Для этого регулируют потоки пучковых и медленных электронов на анод и управляющий электрод за счет варьирования потенциала анода U_a от 5 до 20 В и потенциала управляющего электрода U_{y_3} от 35 до 40 В при помощи внешних источников напряжения, а концентрацию электронов регулируют изменяя давление гелия от 1 до 5 Торр при помощи системы редукторов и игольчатого натекателя. При этом ток возрастает от 1,3 до 4 раз, напряжение от 2 до 5 раз, а электрическая мощность от 1,3 до 20 раз. Значения приращений тока, напряжения и мощности в основной цепи регистрируют при помощи цифровых мультиметров, и обеспечивают повышение эффективности питания силовых цепей, эксплуатируемых в условиях высокого уровня радиации и температуры окружающей среды.

Способ поясняется следующими примерами.

На первом этапе между катодом и анодом зажигают низковольтный пучковый разряд. При этом формируется распределение потенциала, представленное на фиг. 2. Видно, что основные изменения потенциала происходят в приэлектродных областях, тогда как в основной части зазора катод-анод сформирована область квазинейтральности. Если ток на управляющий электрод равен нулю, то распределение потенциала иллюстрируется пунктирной линией. В этом режиме электроны, эмиттированные катодом, ускоряются на прикатодном скачке потенциала до энергий не менее 25 В и образуют плотный пучок, беспрепятственно достигающий анода, и осуществляющий ионизацию атомов гелия. В результате рождаются медленные электроны с энергией не менее 2 эВ. Электроны этой группы не участвуют в токопереносе, поскольку оказываются запертыми в потенциальной яме между катодом и анодом. При подаче на управляющий электрод тока 0,1 А распределение потенциала изменяется-формируется скачок потенциала $\Delta \phi$ вблизи отверстия анода, показанный сплошной линией на фиг. 2. Этот скачок ускоряет медленные электроны, и обеспечивает их ток на управляющий электрод через отверстие в основном аноде. В этом режиме управление потоками пучковых и медленных электронов путем изменения потенциалов анода U_a и управляющего электрода $U_{v \ni}$ совместно с регулировкой давления гелия P_{He} позволяет получать различные значения коэффициентов усиления тока K_i , напряжения K_{ij} и мощности K_{p} .

Пример 1. Усиление тока в электрической цепи производилось путем варьирования потенциала анода U_a от 5 до 20 В в диапазоне давлений гелия от 1 до 5 Торр. Для проверки эффективности усиления регистрировались приращения электронных токов на анод Δi_a , управляющий электрод Δi_{y_9} и их отношение, представляющее собой коэффициент усиления тока K_i = $\Delta i_a/\Delta i_{y_9}$. Результаты представлены в таблице 1. Видно, что при фиксированном значении давления коэффициент усиления непрерывно возрастает в зависимости от U_a , что объясняется ростом тока медленных электронов на анод при их слабо меняющейся концентрации.

Таблица 1 - Значения коэффициентов усиления тока K_i при различных давлениях гелия и потенциалах анода

P _{He} , Topp	0,5	1	3	5	6
U _a , B	K _{i1}	K _{i2}	K _{i3}	K _{i4}	K _{i5}
5,0	0,10	0,15	0,20	0,3	0,01
7,5	0,12	0,20	0,20	0,5	0,01
10,0	0,15	0,25	0,50	1,0	0,02
12,5	0,25	0,50	0,80	1,3	0,03
15,0	0,40	0,80	1,30	2,0	0,04
17,5	0,60	1,30	1,85	2,7	0,06
20,0	0,95	2,15	3,10	4,0	0,09

5

15

35

Обращает на себя внимание резкое снижение эффективности способа при давлении менее 1 Торр и более 5 Торр. Это объясняется тем, что в первом случае падает концентрация атомов и метастабилей гелия, а значит и концентрация заряженных частиц в плазме. При давлениях выше 5 Торр частота упругих столкновений возрастает настолько, что пучок электронов релаксирует не только по импульсу, но и по энергии, и теряет свою ионизирующую способность.

На фиг. 3 приведена зависимость коэффициента усиления тока K_i от анодного потенциала U_a для различных давлений гелия P_{He} . Видно, что с ростом давления от 1 до 5 Торр коэффициент усиления тока растет за счет увеличения концентрации заряженных частиц. Максимально эффективное усиление тока осуществляется при давлении гелия 5 Торр, когда K_i достигает 4 при U_a =20 В.

Пример 2. Усиление напряжения осуществлялось за счет варьирования потенциала управляющего электрода U_{y9} от 35 до 40 B в диапазоне давлений гелия от 1 до 5 Торр. Для проверки эффективности способа регистрировались приращения напряжений на аноде ΔU_a , управляющем электроде ΔU_{y9} и их отношение, представляющее собой коэффициент усиления напряжения $K_u = \Delta U_a/\Delta U_{y9}$. Данные по приращениям напряжения ΔU_a , ΔU_a и коэффициентам усиления при давлениях гелия 1, 3 и 5 Торр, а также 0,5 и 6 Торр представлены в таблице 2.

Таблица 2 - Значения коэффициентов усиления напряжения K_u при различных давлениях гелия и потенциалах управляющего электрода

P _{He} =0,5 Topp		P _{He} =1 Topp		P _{He} =3 Topp		P _{He} =5 Topp		P _{He} =6 Topp	
ΔU _{y3} , B	ΔU _a , B	ΔU _{yэ} , B	ΔU _a , B	ΔU _{yэ} , B	ΔU _a , B	ΔU _{yэ} , B	ΔU _a , B	ΔU _{yэ} , B	ΔU _a , B
35-40	35-37	35-40	35-40	35-37	35-39	35-36	35-40	35-36	5-35,1
K _{u1} =0,4		K _{u2} =1,0		$K_{u3}=2,0$		K _{u4} =5,0		K _{u5} =0,1	

Из таблицы 2 видно, что эффективность усиления напряжения растет с увеличением давления до момнта достижения P_{He} =5 Торр. Если при давлении 1 Торр приращение потенциала управляющего электрода от 35 до 40 В не приводит к приращению потенциала на аноде, т.е. K_{u1} =1, то при давлении 3 Торр напряжение возрастает в 2 раза (K_{u2} =2), а при давлении гелия 5 Торр достигается пятикратное увеличение напряжения, когда K_{u3} = $\Delta U_a/\Delta U_{y3}$ =5. В случае превышении давления 5 Торр, равно как и при его падении ниже 1 Торр, усиление напряжения становится неэффективным

и при его падении ниже т торр, усиление напряжения становится неэффективным соответственно по причине энергетической релаксации электронов пучка и снижения концентрации заряженных частиц.

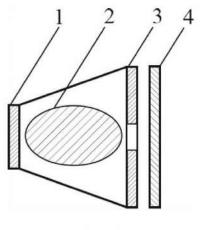
Зависимости ΔU_a от ΔU_{y9} при разных давлениях гелия представлены на фиг. 4, убедительно подтверждая возможность усиления напряжения от 2 до 5 раз в диапазоне давлений 1-5 Topp.

Пример 3. Для проверки эффективности усиления электрической мощности регистрировались ее приращения в зазорах катод-анод $\Delta P_{\text{к-a}}$ и катод-управляющий электрод $\Delta P_{\text{к-y}}$ при P_{He} =5 Торр, а также отношение приращений, представляющее собой коэффициент усиления электрической мощности K_p = $\Delta P_{\text{к-a}}/\Delta P_{\text{к-y}}$. Результаты представлены в таблице 3.

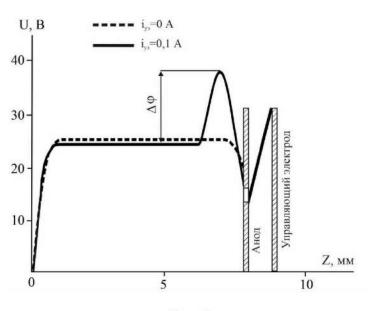
Таблица 3 - Значения коэффициентов усиления электрической мощности K_p при различных давлениях гелия и потенциалах анода

10		P_{He} =6 Topp; K_{u5} =0,1 (отсутствие усиления)								
	U _a , B	5,0	7,5	10,0	12,5	15,0	17,5	20,0		
	K _{p5}	0,001	0,001	0,002	0,003	0,004	0,006	0,009		
	P _{He} =5 Topp; K _{u4} =5 (максимальная эффективность усиления)									
	U _a , B	5,0	7,5	10,0	12,5	15,0	17,5	20,0		
15	K _{p4}	1,5	2,5	5,0	6,5	10,0	13,5	20,0		
-		P _{He} =3 Topp; K _{u3} =2								
	U _a , B	5,0	7,5	10,0	12,5	15,0	17,5	20,0		
	K _{p3}	0,4	0,5	1,0	1,7	2,6	3,7	6,2		
	P_{He} =1 Topp; K_{u2} =1 (минимальная эффективность усиления)									
20	U _a , B	5,0	7,5	10,0	12,5	15,0	17,5	20,0		
	K _{p2}	0,15	0,20	0,25	0,50	0,80	1,30	2,15		
	P_{He} =0,5 Topp; K_{ul} =0,4 (отсутствие усиления)									
	U _a , B	5,0	7,5	10,0	12,5	15,0	17,5	20,0		
	К _{p1}	0,04	0,048	0,06	0,1	0,16	0,24	0,38		

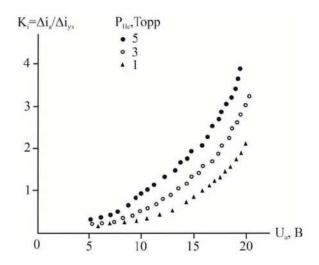
Максимальное приращение электрической мощности достигается при давлении гелия 5 Торр, когда коэффициент усиления возрастает от 1,5 до 20 при варьировании потенциала анода от 5 до 20 В. В областях давлений P_{He} <1 Торр и P_{He} >5 Торр способ теряет эффективность с точки зрения усиления мощности.

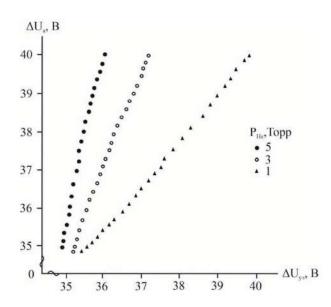

25

35


Способ обеспечивает увеличение силы тока, напряжения и электрической мощности в силовых цепях путем управления потоками электронов разных энергий на анод и управляющий электрод за счет варьирования их потенциалов и управления концентрацией заряженных частиц путем регулировки давления гелия.

(57) Формула изобретения


Способ управления потоками электронов в триоде, заполненном гелием, при котором создают разряд непосредственно между катодом и управляющим электродом через отверстие в аноде, между катодом и анодом зажигают низковольтный пучковый разряд при нулевом токе на управляющий электрод, при этом создают между ними разность потенциалов не менее потенциала ионизации гелия в 24,7 В стабилизированным источником напряжения, за счет этого формируется распределение потенциала с резкими скачками вблизи катода и анода и областью квазинейтральности в основной части зазора катод-анод, далее варьируют потенциал анода U_a от 5 до 20 В и потенциал управляющего электрода U_{y_9} от 35 до 40 В внешними источниками напряжения, а концентрацию электронов регулируют, изменяя давление гелия от 1 до 5 Торр системой редукторов и игольчатого натекателя, при этом ток возрастает от 1,3 до 4 раз, напряжение от 2 до 5 раз, а электрическая мощность от 1,3 до 20 раз, значения их приращений в основной цепи регистрируют цифровыми мультиметрами.


Фиг. 1

Фиг. 2

Фиг. 3

Фиг. 4