fon
Образовательный центр цифровых технологий
О центре
Cкорость научно-технологического прогресса и исчезновение определенных видов деятельности, связанное с проникновением автоматизации во все сферы производственных и управленческих процессов, являются факторами возможного роста для предприятий будущего. Цифровая интеграция, объединяющая научные направления, кадры, процессы, пользователей и данные, будет создавать условия для научно-технических достижений и прорывов, обеспечивая научно-экономические сдвиги в смежных отраслях и, прежде всего, на глобальном минерально-сырьевом рынке. В этой связи в 2018 году с целью обучения, исследований и разработок в области цифровых технологий для предприятий минерально-сырьевого и топливно-энергетического комплексов в Горном университете создан «Образовательный центр цифровых технологий».
Подробнее о задачах
point
Направления научных исследований
Данное направление предполагает рассмотрение интеллектуальных технологий управления электроэнергетическими системами, включая передачу электрической энергии, управление спросом на электрическую энергию, цифровые двойники объектов электроэнергетики, цифровые информационные модели электротехнических систем.
Читать далее   Лаборатория  
detail
 
В рамках данного направления ведется разработка новых методов мониторинга и управления на основе цифровых и информационных технологий, создание информационных систем для решения задач горной отрасли.
Читать далее   Лаборатория  
detail
 
Данное направление нацелено на развитие и популяризацию инженерного образования, повышение цифровых компетенций сотрудников и обучающихся, а также реализацию программ дополнительного профессионального образования для представителей компаний ТЭК и МСК.
Читать далее   Лаборатория  
detail
 
Данное направление предполагает исследование и обоснование комплексных показателей эффективности генерации, транспорта и потребления энергии при снабжении от традиционных и возобновляемых источников энергии с учетом влияния глобальных вызовов и вариации внешних факторов.
Читать далее   Лаборатория  
detail
 
В рамках данного направления проводятся исследования, направленные на повышение эффективности оборудования и технологических процессов добычи, переработки и транспортировки полезных ископаемых.
Читать далее   Лаборатория  
detail
 
Проекты
Научные публикации
publications

Augmented reality system and maintenance of oil pumps

Ключевые слова:Augmented reality | Digitalisation | Maintenance | Oil pump
Дата публикации: 2020-08-01
Журнал: International Journal of Engineering, Transactions B: Applications
Авторы: Koteleva, N, Buslaev, G, Valnev, V, Kunshin, A.

Q3

(Scimago)

Qualification of employees who operate technological processes directly influences the safety of production. However, the employees’’ qualification cannot completely exclude human factor. Today, there are many technologies that can minimize or eliminate human factor impact on production safety ensuring. The augmented reality technology is an example of this technology. Nowadays, the augmented reality technologies and industrial technologies integration process moves to a new level of development. These technologies have huge experience, which has been accumulated in a long period of time. -This new level turns available by this experience combination and integration; it brings additional profit to the enterprise and can be a basis for completely new technologies. This paper shows an example of combination of augmented reality technology and oil pumps maintenance. For researching of efficiency of augmented reality system for oil pump maintenance, the laboratory unit with Grundfos vertical electric centrifugal pump (CR15-4 A-FGJ-AE-HQQE) was used. The laboratory unit is a physical model of one of the continuous oil processes. The oil pump of this laboratory unit is object of this research. The algorithm of servicing of oil pump was developed. The test of system and algorithms were carried out with four groups of people: the first one had only instructions to use on hand, the second one only used the internal recommendations of the system, the third one used only the help of an expert, and the fourth used internal recommendations and, if necessary, contacted the expert. The results show the efficiency and actuality of augmented reality technology for maintenance of industrial equipment, especially for the equipment operated in remote Arctic conditions.

Production Process Data as a Tool for Digital Transformation of Metallurgical Companies

Ключевые слова:BigData | Correlation coefficient | Data analysis | Data preprocessing | Digitalisation | Production statistics
Дата публикации: 2022-01-01
Журнал: Lecture Notes in Networks and Systems
Авторы: Stoianova, A, Vasilyeva, N.
ISSN:23673389

Q4

(Scimago)

Big Data analysis is becoming an everyday task for companies all over the world, including Russian companies. Due to advances in technology and the reduction in the cost of storage systems, companies can now collect and store large volumes of heterogeneous data. The important step of extracting knowledge and value from such data is a challenge that will eventually be met by all companies seeking to maintain their competitiveness and place in the market. However, companies face several challenges when it comes to collecting, pre-processing, and integrating data into cohesive data sets designed to deliver analytics. In this article, the above problems and possible solutions are illustrated using the example of cleaning, integration, and normalization of data obtained in the measurement of indicators for the Vanyukov melting furnace process. The article considers an approach to the study of metallurgical processes using the analysis of large operational control data sets. Standard methods of processing the data sets of operational process control are used. The correlation analysis of the main process parameters is carried out. The results are interpreted for their further practical application.
publications

Identification of the technical condition of induction motor groups by the total energy flow

Ключевые слова:Classification algorithm | Current harmonic distortion factor | Induction electric motor | Simulation model | The coefficient of electromagnetic momentum ripple
Дата публикации: 2021-10-01
Журнал: Energies
Авторы: Koteleva, N.I, Korolev, N.A, Zhukovskiy, Y.L.
ISSN:19961073

Q2

(Scimago)

The paper discusses the method of identifying the technical condition of induction motors by classifying the energy data coming from the main common power bus. The work shows the simulation results of induction motor operation. The correlation between occurring defects and current diagrams is presented. The developed simulation model is demonstrated. The general algorithm for conducting experiments is described. Five different experiments to develop an algorithm for the classification are conducted: determination of the motors number in operation with different power; determination of the motors number in operation with equal power; determination of the mode and load of induction electric motor; determination of the fault and its magnitude with regard to operation and load of induction motor; determination of the fault and its magnitude with regard to operation and load of induction motor with regard to non-linear load in the flow. The article also presents an algorithm for preprocessing data to solve the classification problem. In addition, the classification results are shown and recommendations for testing and using the classification algorithm on a real object are made.
Все публикации  
Отзывы партнёров
"Together with the Educational Center of Digital Technologies at St. Petersburg Mining University, we have been collaborating for several years to shape fundamental and applied challenges and ideas for the digitalisation of the mining industry."
"We are very glad to be part of the process that the Educational Center of Digital Technologies at St. Petersburg Mining University is engaged in. We are confident that this centre can become an assembly point for all those new solutions that will bring the mining industry to a new level."
The Committee for the Fuel and Energy Complex of the Leningrad Region expresses its gratitude to you for your support in holding the Festival and organising an informative exposition of the enterprise aimed at attracting the young generation to the fuel and energy complex profession.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
On behalf of the Ministry of Energy of Russia, we would like to express our gratitude to the WeWatt team of young researchers for the great and necessary work for the industry, done under your leadership on a proactive and pro bono basis.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
Institute for Problems of Integrated Subsoil Development, Dmitry Klebanov
Leonid Zhukov, Director of SITECH Division of Zeppelin Rusland Ltd.
Committee for Fuel and Energy Complex, Chairman of the Committee Y.V. Andreev
Ministry of Energy of the Russian Federation
 
 
reviews
Партнеры

Для улучшения работы сайта и его взаимодействия с пользователями мы используем файлы cookie. Продолжая работу с сайтом, Вы разрешаете использование cookie-файлов. Вы всегда можете отключить файлы cookie в настройках Вашего браузера.