fon
Educational Center of Digital Technologies
About center
The speed of scientific and technological progress and the disappearance of certain activities associated with the penetration of automation into all areas of production and management processes are factors of possible growth for enterprises of the future. Digital integration, which integrates scientific directions, people, processes, users and data, will create the conditions for scientific and technological advances and breakthroughs, enabling scientific and economic shifts in related industries and, above all, in the global mineral market. In this regard, in 2018, for the purpose of training, research and development in the field of digital technologies for the enterprises of mineral and fuel and energy complexes, the "Educational Center of Digital Technologies" was established at the Mining University.
Learn more about tasks
point
Directions of scientific research
This direction implies the consideration of intellectual technologies of electric power systems management, including electric power transmission, electric power demand management, digital twins of electric power facilities, digital information models of electrical engineering systems.
Read more   Laboratory  
detail
 
Within the framework of this direction, new methods of monitoring and management based on digital and information technologies are being developed, and information systems are being created to solve mining industry problems.
Read more   Laboratory  
detail
 
This direction is aimed at the development and popularisation of engineering education, improvement of digital competencies of employees and students, as well as implementation of additional professional education programmes for representatives of fuel and energy complex companies.
Read more   Laboratory  
detail
 
This direction implies research and substantiation of complex indicators of efficiency of energy generation, transport and consumption when supplied from traditional and renewable energy sources, taking into account the impact of global challenges and variation of external factors.
Read more   Laboratory  
detail
 
Within the framework of this direction, research is carried out aimed at improving the efficiency of equipment and technological processes of mining, processing and transporting minerals.
Read more   Laboratory  
detail
 
Scientific publications

Evaluation of bulk material behavior control method in technological units using dem. Part 1

Keywords:Bulk materials | Classification of motion modes | DEM-modeling | Neural networks | Pelletizing drums
Date of publication: 2020-01-01
Journal: CIS Iron and Steel Review
Authors: Boikov, A.V, Savelyev, R.V, Payor, V.A, Erokhina, O.O.
ISSN:24141089

Q1

(Scimago)

Nowadays pelletizing drums are widely used in the steel industry. These units are characterized by high endurance and low cost of maintenance. However, use and control of these units in the process of coarsening have a number of issues. For most of the cases pelletizing drums are “black box” and control accuracy can not be estimated exactly. It is explained by low existing theoretical basis of this production process. Particularly it is tied up with the variability of the bulk materials (charges) parameters supplied to the unit. Overcome of this issues can be reached with development of intelligent control systems for drum pelletizing machines. Main requirement for such systems is possibility to level or consider the effect of charges properties variability in control. However, it is necessary to study the behavior of bulk materials inside the units. Visual assessment of pelletization does not allow to evaluate the ongoing physical processes. Development of mathematical and numerical models can help studying the process and take a lot of parameters into account including charges properties and even interaction with water. But the adequacy of the resulting models also has to be clarified using physical devices to record or capture bulk materials behavior inside the units. This research proposes a DEM simulation test of the concept for bulk material behavior control through the recognition of the mixture movement fragments using special capsules. This part is dedicated to the simulation model set up and extracting the particles trajectories for further processing.
publications

Monitoring the technical condition of autonomous electrical systems with electric drive

Date of publication: 2019-12-18
Journal: E3S Web of Conferences
Authors: Korolev, N, Solovev, S.
ISSN:22671242

The article discusses the structure of autonomous electrical systems with an electric drive and an electric energy generation system. An approach is described for assessing the overall efficiency of technological cycle equipment with specification of parameters that must be considered when calculating it. The necessity of taking into account energy efficiency and operability indicators of autonomous electric complexes is substantiated. The effectiveness of the use of autonomous systems decreases throughout the entire life cycle due to wear and tear. As the operability of electromechanical equipment, an indicator of the residual resource is selected. The calculation of the residual resource, with the definition of its boundary values and recommendations for further use. Nominal energy efficiency parameters of autonomous electrotechnical complexes with electric drive deteriorate during operation, which also needs to be taken into account. To simplify the assessment of the operational state of electromechanical equipment, a state diagram is presented that allows you to track the dynamics of degradation of individual nodes. Taking into account the described indicators and means of control, it is possible to increase the efficiency of using autonomous complexes.
publications

Improving transportation efficiency belt conveyor with intermediate drive

Keywords:Bet conveyor | Intermediate drive | Linear actuator | Partitions | Tension
Date of publication: 2019-01-01
Journal: Journal of Mining Institute
Authors: Trufanova, I.S, Serzhan, S.L.
ISSN:25419404

Q2

(Scimago)

Modern industry in the XXI century requires high-performance and fully automated technology. The best way to meet these requirements is the introduction of new progressive technologies in the process of transportation. One of the possible ways to increase productivity, as well as automate the process of transportation, is the transition from cyclic machines to continuous transport, namely to belt conveyors. However, with the increase in the length of the conveyor there is a need for stronger belts. This can be avoided by using intermediate drives of various designs. The article describes the principle of operation of the intermediate linear drive with transverse partitions, provides formulas for calculating the values of the tractive effort, gives comparative graphs showing the effectiveness of the use of an intermediate drive in various conditions. The possibilities of increasing the capacity of an intermediate linear drive are described.
All publications  
Partner reviews
"Together with the Educational Center of Digital Technologies at St. Petersburg Mining University, we have been collaborating for several years to shape fundamental and applied challenges and ideas for the digitalisation of the mining industry."
"We are very glad to be part of the process that the Educational Center of Digital Technologies at St. Petersburg Mining University is engaged in. We are confident that this centre can become an assembly point for all those new solutions that will bring the mining industry to a new level."
The Committee for the Fuel and Energy Complex of the Leningrad Region expresses its gratitude to you for your support in holding the Festival and organising an informative exposition of the enterprise aimed at attracting the young generation to the fuel and energy complex profession.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
On behalf of the Ministry of Energy of Russia, we would like to express our gratitude to the WeWatt team of young researchers for the great and necessary work for the industry, done under your leadership on a proactive and pro bono basis.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
Institute for Problems of Integrated Subsoil Development, Dmitry Klebanov
Leonid Zhukov, Director of SITECH Division of Zeppelin Rusland Ltd.
Committee for Fuel and Energy Complex, Chairman of the Committee Y.V. Andreev
Ministry of Energy of the Russian Federation
 
 
reviews

Для улучшения работы сайта и его взаимодействия с пользователями мы используем файлы cookie. Продолжая работу с сайтом, Вы разрешаете использование cookie-файлов. Вы всегда можете отключить файлы cookie в настройках Вашего браузера.